hli logo
Image from Coce

Magnetic Resonance Imaging the basics Christakis Constantinides

By: Material type: TextTextPublication details: London CRC Press 2014Description: xxix, 205 p ill 26 cmISBN:
  • 9781482217315
Subject(s): DDC classification:
  • 616.07548
Contents:
Fourier Transformations Mathematical Representation of Images Continuous Images Delta Function Separable Images Linear Shift Invariant (LSI) Systems Cascade Systems Stability Fourier Transformation and Inverse FT Properties of Fourier Transformations Frequency Response Discrete Images and Systems Separable Images Linear Shift Invariant Systems Frequency Response-Point Spread Sequence Discrete Fourier Transform and Its Inverse Properties of Discrete Fourier Transforms Fundamentals of Magnetic Resonance Imaging Quantum Mechanical Description of NMR: Energy Level Diagrams Boltzmann Statistics Pulsed and Continuous Wave NMR Spin Quantum Numbers and Charge Densities Angular Momentum and Precession Overview of MR Instrumentation The Classical View of NMR-A Macroscopic Approach Rotating Frame and Laboratory Frame RF Excitation and Detection Molecular Spin Relaxation-Free Induction Decay T1 and T2 Measurements Relaxation Times in Biological Tissues Molecular Environment and Relaxation Biophysical Aspects of Relaxation Times Spectral Density and Correlation Times T1 and T2 Relaxation Quadrupolar Moments Fundamentals of Magnetic Resonance II: Imaging Magnetic Field Gradients Spin-Warp Imaging and Imaging Basics Slice Selection Multislice and Oblique Excitations Frequency Encoding Phase Encoding Fourier Transformation and Image Reconstruction Fundamentals of Magnetic Resonance III: The Formalism of k-Space MRI Signal Formulation k-Space Formalism and Trajectories Concept of Pulse Sequences Echo Planar Imaging Pulse Sequences T1, T2, and Proton Density-Weighted Images Saturation Recovery, Spin-Echo, Inversion Recovery Gradient-Echo Imaging: FLASH, SSFP, and STEAM Bloch Equation Formulation and Simulations Technical Limits and Safety Introduction to Instrumentation Magnets and Designs Stability, Homogeneity, and Fringe Field Gradient Coils RF Coils RF Decoupling B Field Distributions and Simulations Safety Issues Tour of an MRI Facility Hardware Imaging Generation of MRI Images Safety Signal, Noise, Resolution, and Image Contrast Signal and Noise Sources in MRI Signal to Noise Ratio Contrast-to-Noise Ratio Tissue Parameters and Image Dependence Imaging Parameters and Image Dependence Resolution Spectroscopy and Spectroscopic Imaging Introduction to NMR Spectroscopy Fundamental Principles Localized Spectroscopy Imaging Equation and Spectroscopic Imaging Advanced Imaging Techniques: Parallel Imaging Introduction to Parallel Imaging Parallel Imaging Fundamentals Transmit Phased Arrays Problem Sets Multiple Choice Questions Solutions to Selected Problems Answers to Multiple Choice Questions Glossary Bibliography Index
Item type:
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Current library Home library Shelving location Call number Copy number Status Date due Barcode Item holds
4 Week Loan St. Luke's General Hospital Kilkenny St. Luke's General Hospital Kilkenny Open Shelves 616.07548 (Browse shelf(Opens below)) 1 Available 036725
Total holds: 0

Includes bibliographical references and index

Fourier Transformations Mathematical Representation of Images Continuous Images Delta Function Separable Images Linear Shift Invariant (LSI) Systems Cascade Systems Stability Fourier Transformation and Inverse FT Properties of Fourier Transformations Frequency Response Discrete Images and Systems Separable Images Linear Shift Invariant Systems Frequency Response-Point Spread Sequence Discrete Fourier Transform and Its Inverse Properties of Discrete Fourier Transforms Fundamentals of Magnetic Resonance Imaging Quantum Mechanical Description of NMR: Energy Level Diagrams Boltzmann Statistics Pulsed and Continuous Wave NMR Spin Quantum Numbers and Charge Densities Angular Momentum and Precession Overview of MR Instrumentation The Classical View of NMR-A Macroscopic Approach Rotating Frame and Laboratory Frame RF Excitation and Detection Molecular Spin Relaxation-Free Induction Decay T1 and T2 Measurements Relaxation Times in Biological Tissues Molecular Environment and Relaxation Biophysical Aspects of Relaxation Times Spectral Density and Correlation Times T1 and T2 Relaxation Quadrupolar Moments Fundamentals of Magnetic Resonance II: Imaging Magnetic Field Gradients Spin-Warp Imaging and Imaging Basics Slice Selection Multislice and Oblique Excitations Frequency Encoding Phase Encoding Fourier Transformation and Image Reconstruction Fundamentals of Magnetic Resonance III: The Formalism of k-Space MRI Signal Formulation k-Space Formalism and Trajectories Concept of Pulse Sequences Echo Planar Imaging Pulse Sequences T1, T2, and Proton Density-Weighted Images Saturation Recovery, Spin-Echo, Inversion Recovery Gradient-Echo Imaging: FLASH, SSFP, and STEAM Bloch Equation Formulation and Simulations Technical Limits and Safety Introduction to Instrumentation Magnets and Designs Stability, Homogeneity, and Fringe Field Gradient Coils RF Coils RF Decoupling B Field Distributions and Simulations Safety Issues Tour of an MRI Facility Hardware Imaging Generation of MRI Images Safety Signal, Noise, Resolution, and Image Contrast Signal and Noise Sources in MRI Signal to Noise Ratio Contrast-to-Noise Ratio Tissue Parameters and Image Dependence Imaging Parameters and Image Dependence Resolution Spectroscopy and Spectroscopic Imaging Introduction to NMR Spectroscopy Fundamental Principles Localized Spectroscopy Imaging Equation and Spectroscopic Imaging Advanced Imaging Techniques: Parallel Imaging Introduction to Parallel Imaging Parallel Imaging Fundamentals Transmit Phased Arrays Problem Sets Multiple Choice Questions Solutions to Selected Problems Answers to Multiple Choice Questions Glossary Bibliography Index

1

There are no comments on this title.

to post a comment.